Texas-instruments TMS320C3x Manuel d'utilisateur Page 135

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 757
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 134
Floating-Point Multiplication
5-30
Example 5–9. Floating-Point Multiply (Both Mantissas = 1.5)
Let:
α = 1.5 × 2
α
(
exp
)
= 01.0000000000000000000000 × 2
α
(
exp
)
b
= 1.5 × 2
b
(
exp
)
= 01.0000000000000000000000 × 2
b
(
exp
)
Where:
a
and
b
are both represented in binary form according to the single-preci-
sion floating-point format.
Then:
10.00000000000000000000000 × 2
α
(
exp
)
x 10.00000000000000000000000 × 2
b
(
exp
)
01.0000000000000000000000000000000000000000000000 × 2
(
α
(
exp
)
+
b
(
exp
)
+
2)
To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:
01.0000000000000000000000 × 2
α
(
exp
)
× 01.0000000000000000000000 × 2
b
(
exp
)
01. 00100000000000000000000000000000000000000000000 × 2
(
α
(
exp
)
+
b
(
exp
)
+
1)
Example 5–10. Floating-Point Multiply (Both Mantissas = 1.0)
Let:
α = 1.0 × 2
α
(
exp
)
= 01.00000000000000000000000 × 2
α
(
exp
)
b
= 1.0 × 2
b
(
exp
)
= 01.00000000000000000000000 × 2
b
(
exp
)
Where:
a
and
b
are both represented in binary form according to the single-preci-
sion floating-point format.
Then:
01.00000000000000000000000 × 2
α
(
exp
)
× 01.00000000000000000000000 × 2
b
(
exp
)
0001.0000000000000000000000000000000000000000000000 y 2
(
a
(
exp
)
+
b
(
exp
))
This number is in the proper normalized format. Therefore, no shift of the
mantissa or modification of the exponent is necessary.
The previous examples show cases where the product of two normalized
numbers can be normalized with a shift of 0, 1, or 2. The floating-point format
of the ‘C3x makes this possible.
Vue de la page 134
1 2 ... 130 131 132 133 134 135 136 137 138 139 140 ... 756 757

Commentaires sur ces manuels

Pas de commentaire